clamp cdist where poisson

clamp

  • torch.clamp: Clamp all elements in input into the range [min, max]. Let min_value and max_value be min and max, respectively.
>>> a = torch.randn(4)
>>> a
tensor([-1.7120,  0.1734, -0.0478, -0.0922])
>>> torch.clamp(a, min=-0.5, max=0.5)
tensor([-0.5000,  0.1734, -0.0478, -0.0922])

>>> a = torch.randn(4)
>>> a
tensor([-0.0299, -2.3184,  2.1593, -0.8883])
>>> torch.clamp(a, min=0.5)
tensor([ 0.5000,  0.5000,  2.1593,  0.5000])

>>> a = torch.randn(4)
>>> a
tensor([ 0.7753, -0.4702, -0.4599,  1.1899])
>>> torch.clamp(a, max=0.5)
tensor([ 0.5000, -0.4702, -0.4599,  0.5000])

cdist

  • torch.cdist: Computes batched the p-norm distance between each pair of the two collections of row vectors.
>>> a = torch.tensor([[0.9041,  0.0196], [-0.3108, -2.4423], [-0.4821,  1.059]])
>>> a
tensor([[ 0.9041,  0.0196],
        [-0.3108, -2.4423],
        [-0.4821,  1.0590]])
>>> b = torch.tensor([[-2.1763, -0.4713], [-0.6986,  1.3702]])
>>> b
tensor([[-2.1763, -0.4713],
        [-0.6986,  1.3702]])
>>> torch.cdist(a, b, p=2)
tensor([[3.1193, 2.0959],
        [2.7138, 3.8322],
        [2.2830, 0.3791]])

where

  • torch.where: Return a tensor of elements selected from either x or y, depending on condition.
>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> x
tensor([[-0.4620,  0.3139],
        [ 0.3898, -0.7197],
        [ 0.0478, -0.1657]])
>>> torch.where(x > 0, x, y)
tensor([[ 1.0000,  0.3139],
        [ 0.3898,  1.0000],
        [ 0.0478,  1.0000]])
>>> x = torch.randn(2, 2, dtype=torch.double)
>>> x
tensor([[ 1.0779,  0.0383],
        [-0.8785, -1.1089]], dtype=torch.float64)
>>> torch.where(x > 0, x, 0.)
tensor([[1.0779, 0.0383],
        [0.0000, 0.0000]], dtype=torch.float64)

poisson

  • torch.poission: Returns a tensor of the same size as input with each element sampled from a Poisson distribution with rate parameter given by the corresponding element in input.
>>> rates = torch.rand(4, 4) * 5  # rate parameter between 0 and 5
>>> torch.poisson(rates)
tensor([[9., 1., 3., 5.],
        [8., 6., 6., 0.],
        [0., 4., 5., 3.],
        [2., 1., 4., 2.]])
recent article

OpenSSH

IntroductionOpenSSH is a powerful collection of tools for the remote control of, and transfer of data between, networked computers. You will also learn about some of the configuration settings possible with the OpenSSH server application and how t...…

ssh docker blogread
previous article

squeeze unsqueeze size view repeat expand expand_as cat split transpose permute matmul mul mm einsum

Introduction The torch package contains data structures for multi-dimensional tensors and defines mathematical operations over these tensors. Additionally, it provides many utilities for efficient serializing of Tensors and arbitrary types, and o...…

squeeze unsqueeze size view repeat expand expand_as cat split transpose permute matmul mul mm einsum pytorch docker blogread